Author:
Kratsch Dieter,Stewart Lorna
Publisher
Springer Berlin Heidelberg
Reference23 articles.
1. Ando, K., A. Kaneko, S. Gervacio, The bandwidth of a tree with k leaves is at most $$ \left\lceil {\frac{k} {2}} \right\rceil $$ , Discrete Mathematics 150 (1996), 403–406.
2. Assmann, S. F., G.W. Peck, M.M. Syslo and J. Zak, The bandwidth of caterpillars with hairs of length 1 and 2, SIAM J. Algebraic Discrete Methods 2 (1981), 387–393.
3. Blair, J. R. S., B. Peyton, An introduction to chordal graphs and clique trees, in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, J. W. H. Liu (Eds.), The IMA Volumes in Mathematics and its Applications, Volume 56.
4. Booth, K.S. and G.S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci. 13 (1976), 335–379.
5. Chinn, P. Z., J. Chvátalová, A. K. Dewdney and N.E. Gibbs, The bandwidth problem for graphs and matrices—a survey, J. Graph Theory 6 (1982), 223–254.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Integral Mixed Unit Interval Graphs;Lecture Notes in Computer Science;2012
2. Interval degree and bandwidth of a graph;Discrete Applied Mathematics;2003-08