1. Chen, Z., Wang, Z. D., Mou, W. B., Zhu, P. W., & Xiao, G. (2023). State-of-charge estimation of lead-carbon batteries based on the PNGV model and an adaptive Kalman filter algorithm. Energy Storage Science and Technology, 12(3), 941–950.
2. Fu, S. Y., Lyu, T. L., Min, F. Q., Luo, W. L., Luo, C. D., Wu, L., & Xie, J. Y. (2021). Review of estimation methods on SOC of lithium-ion batteries in electric vehicles. Energy Storage Science and Technology, 10(3), 1127–1136.
3. Gao, W. Z., & Huang, T. (2020). Research on SOC estimation method of unscented Kalman filter for lithium battery. Telecom Power Technology, 37(3), 19–20.
4. Gong, M. H., Wu, J., & Jiao, C. Y. (2020). SOC estimation method of lithium battery based on fuzzy adaptive extended Kalman filter. Transactions of China Electrotechnical Society, 35(18), 3972–3978.
5. Huang, J. Y., Li, L. F., Zhang, Y., & Song, X. Y. (2021). Estimation of state of charge for lithium-ion battery based on multi-innovation recursive least square algorithm and unscented Kalman filter. Chinese Journal of Power Sources, 45(6), 711–715.