Dosimetry in cranial photobiomodulation therapy: effect of cranial thickness and bone density

Author:

Castaño-Castaño SergioORCID,Zorzo Candela,Martínez-Esteban Juan Á.,Arias Jorge L.

Abstract

AbstractThis research aims to examine the influence of human skull bone thickness and density on light penetration in PBM therapy across different wavelengths, focusing on how these bone characteristics affect the absorption of therapeutic light. Analyses explored the effect of skull bone density and thickness on light penetration in PBM, specifically using Low-Level Laser Therapy (LLLT) for efficacy prediction. Measurements of bone thickness and density were taken using precise tools. This approach emphasizes LLLT's significance in enhancing PBM outcomes by assessing how bone characteristics influence light penetration. The study revealed no significant correlation between skull bone density and thickness and light penetration capability in photobiomodulation (PBM) therapy, challenging initial expectations. Wavelengths of 405 nm and 665 nm showed stronger correlations with bone density, suggesting a significant yet weak impact. Conversely, wavelengths of 532 nm, 785 nm, 810 nm, 830 nm, 980 nm, and 1064 nm showed low correlations, indicating minimal impact from bone density variations. However, data variability (R2 < 0.4) suggests that neither density nor thickness robustly predicts light power traversing the bone, indicating penetration capability might be more influenced by bone thickness at certain wavelengths. The study finds that the effectiveness of photobiomodulation (PBM) therapy with bone isn't just based on bone density and thickness but involves a complex interplay of factors. These include the bone's chemical and mineral composition, light's wavelength and energy dose, treatment duration and frequency, and the precise location where light is applied on the skull.

Funder

FEDER FICYT

Ministry of Sciences and Innovation Spain

Universidad de Oviedo

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3