Green synthesis of silver and iron oxide nanoparticles mediated photothermal effects on Blastocystis hominis

Author:

Alexeree Shaimaa M. I.ORCID,Abou-Seri Hanan M.,EL-Din Hala E. Shams,Youssef Doaa,Ramadan Marwa A.

Abstract

AbstractThe evolution of parasite resistance to antiparasitic agents has become a serious health issue indicating a critical and pressing need to develop new therapeutics that can conquer drug resistance. Nanoparticles are novel, promising emerging drug carriers that have demonstrated efficiency in treating many parasitic diseases. Lately, attention has been drawn to a broad-spectrum nanoparticle capable of converting absorbed light into heat via the photothermal effect phenomenon. The present study is the first to assess the effect of silver nanoparticles (Ag NPs) and iron oxide nanoparticles (Fe3O4 NPs) as sole agents and with the combined action of the light-emitting diode (LED) on Blastocystis hominins (B. hominis) in vitro. Initially, the aqueous synthesized nanoparticles were characterized by UV-Vis spectroscopy, zeta potential, and transmission electron microscopy (TEM). The anti-blastocyst efficiency of these NPs was tested separately in dark conditions. As these NPs have a wide absorption spectrum in the visible regions, they were also excited by a continuous wave LED of wavelength band (400–700 nm) to test the photothermal effect. The sensitivity of B. hominis cysts was evaluated using scanning laser confocal microscopy whereas the live and dead cells were accurately segmented based on superpixels and the k-mean clustering algorithm. Our findings showed that this excitation led to hyperthermia that induced a significant reduction in the number of cysts treated with photothermally active NPs. The results of this study elucidate the potential role of photothermally active NPs as an effective anti-blastocystis agent. By using this approach, new therapeutic antiparasitic agents can be developed.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3