The effect of combination treatment of CO2-laser irradiation and tetracalcium phosphate/dicalcium phosphate anhydrate on dentinal tubules blockage: an in vitro study

Author:

Laky MarkusORCID,Egelja Mane,Kurzmann Christoph,Laky Brenda,Arslan Muazzez,Shokoohi-Tabrizi Hassan,Rausch-Fan Xiaohui,Moritz Andreas

Abstract

Abstract The aim of this study was the evaluation of the in vitro efficacy of a carbon dioxide (CO2) laser, a tetracalcium phosphate/dicalcium phosphate anhydrate (TP/DP) desensitizer and the combination of the desensitizer and additional CO2 laser irradiation as a treatment modality for cervical dentin hypersensitivity. A total of 48 dental specimens, prepared from extracted human premolars and molars, were divided into four groups: a control group, a TP/DP desensitizer paste group, a CO2 laser (10.600-nm wavelength) group, and a paste and laser group. The specimens were coated with nail varnish except in the marked area and were then immersed in 2% methylene blue dye for 1 h. The specimens were then washed, dried, and cut longitudinally. Thereafter, photos of 40 dentin specimens were taken and evaluated. The area of penetration was assessed and reported as percentage of the dentin surface area. Additionally eight dental specimens were examined with the aid of a scanning electron microscope and evaluated. Significant differences in the penetration depth were found for all experimental groups compared to the control group. The lowest penetration area was detected in the paste-laser group (16.5%), followed by the laser (23.7%), the paste (48.5%), and the control group (86.2%). The combined treatment of the CO2 laser and a TP/DP desensitizer was efficient in sealing the dentinal surface and could be a treatment option for cervical dentin hypersensitivity.

Funder

Medical University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Dermatology,Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3