Reactive oxygen species creation by laser-irradiated indocyanine green as photodynamic therapy modality: an in vitro study

Author:

Atta DiaaORCID,Elarif Abdelrahman,Al Bahrawy Mohamed

Abstract

AbstractApplications of lasers in phototherapy have been the trend for the last few decades. The photodynamic therapy process normally depends on photosensitizers and laser beams. Through this study, indocyanine green has been used as a photosensitizer, which is normally activated using laser lines between 750 and 805 nm. The activity of the indocyanine green to do fluorescence by other pulsed laser sources has been tested by fluorescence technique, and it has been proven that the laser lines at 810, 940, and 980nm are able to excite the indocyanine green with different extents. The indocyanine green activation has been tested by several laser lines (810, 940, and 980 nm) commonly used as surgical lasers. The generated oxygen has been measured after irradiating the indocyanine green with the different laser lines. A comparison has been made between laser irradiation as a pinpoint and a broad beam. It is found that the wide beam is more effective in activating oxygen production. In the end, it is concluded that lines 810 and 940nm were effective in activating the used dye, while the 980nm activity did not show enough efficiency.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Dermatology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3