In vitro fragmentation performance of a novel, pulsed Thulium solid-state laser compared to a Thulium fibre laser and standard Ho:YAG laser

Author:

Kraft Lea,Petzold Ralf,Suarez-Ibarrola Rodrigo,Miernik ArkadiuszORCID

Abstract

Abstract The aim of this work was to compare the fragmentation efficiency of a novel, pulsed Thulium solid-state laser (p-Tm:YAG) to that of a chopped Thulium fibre laser (TFL) and a pulsed Holmium solid-state laser (Ho:YAG). During the fragmentation process, we used a silicone mould to fixate the hemispherical stone models under water in a jar filled with room-temperature water. Each laser device registered the total energy applied to the stone model to determine fragmentation efficiency. Our study examined laser settings with single pulse energies ranging from 0.6 to 6 J and pulse frequencies ranging from 5 to 15 Hz. Similar laser settings were applied to explicitly compare the fragmentation efficiency of all three devices. We experimented with additional laser settings to see which of the three devices would perform best. The fragmentation performance of the three laser devices differed statistically significantly (p < 0.05). The average total energy required to fragment the stone model was 345.96 J for Ho:YAG, 372.43 J for p-Tm:YAG and 483.90 J for TFL. To fragment the stone models, both Ho:YAG and p-Tm:YAG needed similar total energy (p = 0.97). TFL’s fragmentation efficiency is significantly lower than that of Ho:YAG and p-Tm:YAG. Furthermore, we found the novel p-Tm:YAG’s fragmentation efficiency to closely resemble that of Ho:YAG. The fragmentation efficiency is thought to be influenced by the pulse duration. TFL’s shortest possible pulse duration was considerably longer than that of Ho:YAG and p-Tm:YAG, resulting in Ho:YAG and p-Tm:YAG exhibiting better fragmenting efficiency.

Funder

Dornier MedTech Laser GmbH

Albert-Ludwigs-Universität Freiburg im Breisgau

Publisher

Springer Science and Business Media LLC

Subject

Dermatology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3