Performance and mechanism of bentonite in suppressing methane explosions in a pipeline network

Author:

Fengxiao Wang,Jinzhang JiaORCID,Xiuyuan Tian

Abstract

AbstractMethane explosions threaten the safety of industrial security in modern society. To suppress such explosions, experiments were made through using different masses of bentonite power driven by CO2 within a pipe network set up in an independent way. The three factors, including the peak over-pressure of an explosion, the index of the explosion power, and the time length within which the first wave of flames reached the pipe network’s outlet, were measured to evaluate the performance. Moreover, an analysis on the mechanism of suppressing explosions was also conducted. According to the results, a gradual increase of the powder mass from 20 to 50 g could promote the effect of explosion suppression, but a further increase from50 g to 60 g only led to a slight improvement of the performance. Thus, it was concluded that the use of 50 g of bentonite powder worked best for the suppression of methane explosions when environmental conservation, energy saving as well as practicality were all taken into consideration. What was found in this study is supposed to shed theoretical light on how to transport methane safely with disaster risks reduced effectively.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3