Failure mechanism and treatment of mine landslide with gently-inclined weak interlayer: a case study of Laoyingzui landslide in Emei, Sichuan, China

Author:

Li Jing,Hu Bin,Sheng Jianlong,Zhang Zhen

Abstract

AbstractThe landslide of mine is of great harm and wide influence, which can easily cause huge economic losses and endanger the life safety of workers. Therefore, landslide failure mechanism and more efficient landslide treatment methods have been the focus of landslide research. Laoyinzui landslide with a volume of 250,000 m3 occurred along the gently inclined weak interlayer at 6:00 (UTC + 8) on 5 January 2019 in Huangshan Limestone Mine, Emei City, Sichuan Province, China. The deformation history and failure mechanism of the landslide were analyzed based on the field investigation and geological conditions of landslide area. The treatment method of using excavators to remove all sliding body within the arm length by excavating the small-bench in the bedrock was proposed. The slope stability after treatment was analyzed based on the monitoring data. The results showed that the landslide was triggered by rainfall and earthquake after long-term creep deformation under the action of various factors. Weak interlayer was the potential sliding surface of landslide. The tensile cracks at the back edge of the landslide and the joint fissures and karst caves of the upper limestone provided convenient conditions for rainwater infiltration. Mining activities, including excavation and blasting, resulted in deterioration of mechanical properties of rock mass. Rainfall was the main trigger for the landslide. Water accumulated in weak interlayer, leading to increase of pore water pressure and decrease of anti-sliding force. Earthquake was the trigger for the landslide, which resulted in the reduction of rock mass structural strength. The Laoyingzui landslide consisted of two stages. First, a traction landslide of + 825 m–915 m occurred, and then a push landslide of + 725 m–+ 825 m occurred under the compression of the upper rock mass. The slope displacement was small and the deformation tended to be stable. The treatment method was safe and efficient. This paper can provide reference for the failure mechanism research and treatment of similar landslides.

Funder

National Natural Science Foundation of China

Technology Projects of WUST Cultivate Innovation Teams

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3