Quantitative investigation of rock dynamic failure using Voronoi-based discontinuous deformation analysis

Author:

Zhang Kaiyu,Zhang Lei,Liu Feng,Yu Yuchao,Wang Shuai

Abstract

AbstractDynamic failure widely exists in rock engineering, such as excavation, blasting, and rockburst. However, the quantitative measurement of the dynamic damage process using experimental methods remains a challenge. In this study, a SHPB modeling technique is established based on Voronoi-based DDA to study the damage evolution of Fangshan granite under dynamic loading. The assessment of cracking along the artificial joints among Voronoi sub-blocks is conducted using the modified contact constitutive law. A calibration procedure has been implemented to investigate the rock dynamic properties quantitatively. The dispersion and damping effect can be effectively eliminated by regular discretization in SHPB bars, based on which the dynamic stress equilibrium can be satisfied. To reproduce the loading rate effect of the dynamic compressive strength, which has been observed in the experiment, a modification strategy considering the influence of the rate effect on the strength meso-parameters is proposed. Using this strategy, the peak stresses of the transmitted waves predicted by DDA match well with those obtained from experiments conducted at different loading rates. The simulation results show that more microcracks are generated and the proportion of tensile cracks decreases as the loading rate increases. Furthermore, the dynamic mechanical behavior and fracturing process have also been discussed and compared with the experiments. The results show that the established SHPB system is a powerful tool for quantitative analysis of rock dynamics problems and can handle more complex problems in the future.

Funder

Fundamental Research Program of Shanxi Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3