Damage and hardening evolution characteristics of sandstone under multilevel creep–fatigue loading

Author:

Bichuan ZhangORCID,Yunpei Liang,Quanle Zou,Yanhao Ning,Fanjie Kong

Abstract

AbstractDuring the operation of artificial underground structures, the surrounding rock experiences fatigue and creep damage caused by several types of disturbances under long-term constant loading. To quantify the mechanical response of sandstone under creep–fatigue loading, a damage–hardening evolution model based on the linear superposition concept is proposed. In the model, coupling is applied to represent the synergistic effect of creep and fatigue. Creep–fatigue tests of sandstone specimens are conducted under multilevel loading. The damage and hardening effects of sandstone under creep–fatigue loading are complex. Hardening is the dominant effect under low creep–fatigue loads, and damage is the dominant effect under high creep–fatigue loads. The strength of the rock specimens undergoes increasing and decreasing trends under this loading path, and the evolution of the Mohr–Coulomb envelope is discussed. The proposed model can be used to describe the test data and the evolution of the creep–fatigue process. With increasing creep–fatigue number, the acoustic emission amplitude, energy, and cumulative counts increase. However, the amplitude is more sensitive than the energy, indicating that it is more suitable for describing creep–fatigue loading. Furthermore, the peak frequencies of the AE signals are mostly distributed in the 0–15 kHz, 15–30 kHz, 30–45 kHz, and 45–55 kHz regions. The signal proportion in the 45–55 kHz zone decreases with the creep–fatigue number. However, other frequency zones increase with the creep–fatigue number. This phenomenon illustrates that the crack scale of the specimens increases with the creep–fatigue number.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3