Open pit limit optimization considering the pumped storage benefit after mine closure: a case study

Author:

Liu Feiyue,Yang Ke,Yang Tianhong,Deng Wenxue,Li Hua,Yang Lingyue

Abstract

AbstractRepurposing a closed mine as lower reservoir is a cost-effective way for the construction of pumped storage hydropower (PSH) plant. This method can eliminate the expenses of mine reclamation, reservoir construction, and land acquisition, resulting in significant cost savings and benefits for the PSH project, known as the PSH benefit. The construction of PSH plants within a closed mine is divided into surface mode and semi-underground mode in this paper. Through a general comparison of two in-situ cases, the finding highlight that the surface mode can achieve a larger potential installed capacity and lower construction cost. Furthermore, the PSH benefit is quantified and internalized as an economic parameter in the ultimate pit limit (UPL) optimization by allocating it into unit ore. Taken an undisclosed open-pit iron mine as example, the UPL is optimized by considering the PSH benefit. The internalized PSH benefit is calculated to be 6.59 CN¥/t when the installed capacity is 2000 MW, and ore amount within the optimized UPL is increased by 1.4%. The results indicated that the PSH benefit does influence the shape and size of UPL, but not significantly. Besides, converting several bottoms in a single open-pit into lower and upper reservoirs presents more challenges for UPL optimization, which further explorations is needed.

Funder

National Natural Science Foundation of China

State Key Laboratory of Safety and Health for Metal Mines

Institute of Energy, Hefei Comprehensive National Science Center

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3