An experimental study of Lode angle impact on the rock failure procession based on acoustic emission

Author:

Yin Hong,Zhao WanchunORCID,Wang TingtingORCID,Ranjith P. G.,Feng Chundi,Wang Wensong

Abstract

AbstractThe laws of acoustic emission (AE) before and during rock failure are different under different stress states. In this article, a new multi-functional true triaxial geophysical (TTG) apparatus was applied to analyze the AE law of sandstone under different stress paths. The results show that (1) with the increase of Lode angle, the tensile fractures in the sandstone increase initially, followed by a decrease. The number of AE decreases initially, followed by an increase, while the average energy of AE signal increases initially, followed by a decrease. (2) During the loading process, the IB values of rock can be divided into wave type, band type and mixed type, which represent crack propagation process driven by external force, self-driving and mixed driving. It can provide a basis for early warning of underground engineering construction disasters. (3) The variation characteristics of RA and AF in rock failure process show the corresponding relationship with IB value. The RA value corresponding to the IB value of band, wave and distribution type distribution mainly concentrated around 0.05, 0.03 and widely distributed, respectively. According to the value of RA, the types of cracks show different characteristics under different driving forces. (4) With the increase of Lode angle, the failure types of rocks change from single oblique fracture (− 30°) to double-X-type fracture (10°), and finally changes to single-X-type fracture when Lode angle is 30°. The fracture angle of rock decreases initially, followed by an increase with the increase of Lode angle. Therefore, it is important to explore the AE law of rock failure process under different stress states for the early warning of underground engineering construction disasters, and can provide a guidance for the application of human underground space.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3