Experimental study on shale-breaking of special-shaped cutter PDC bit

Author:

Zhang Chunliang,Yang Xin,Zhu Zhaoliang,Ke Xiaohua,Zhang Zhaofeng,Luo Hua,Ma Yong,Song Dongdong

Abstract

AbstractTo enhance the drilling efficiency and extend the service life of PDC (Polycrystalline Diamond Composite) bits in shale formations, this study delves into the rock-breaking mechanisms of special-shaped cutters through a comprehensive experimental approach. This involves optimizing the cutter designs, conducting laboratory experiment and field testing. Among the various cutter geometries considered, concave, axe, planar, and triangular cutters are chosen as the focal points for unit rock-breaking experiments. These tests aim to assess their cutting loads and cutting specific energy to gain a deeper understanding of their performance characteristics. Based on experimental, the debris characteristics are analyzed. Based on the understanding of the shale-breaking characteristics of special-shaped cutters, field testing is performed using a novel PDC bit with a special-shaped cutter. Compared with planar cutters, the concave cutter and the triangular cutter generate lower cutting loads and cutting specific energy. Under identical conditions, the average cutting force and cutting specific energy of concave cutter at different cutting depths are reduced by 16.1% and 19.6% Specifically, the concave cutter generates the largest debris when operated under similar conditions, which is beneficial for increasing rock-breaking efficiency. Laboratory experiment indicate that compared to conventional drill bits, the novel drill bit experiences an increase in torque of approximately 9.8% with increasing WOB (weight on bit). Under high WOB, the ROP (rate of penetration) increases by about 75.4%, while the mechanical specific energy decreases by nearly 40%. Additionally, the novel bit vibration characteristics remain superior to conventional drill bits. Field testing shows that the average ROP of the novel bit and total footage drilled increase by up to 13.3% and 27.2%, respectively, in comparison with those for the conventional bit. The research results are helpful to speed up the efficiency of shale gas drilling.

Funder

National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation

Sichuan Provincial Science Foundation Project

National Natural Science Foundation of China

Science Foundation of Yibin University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3