Gas fracturing behavior and breakdown pressure prediction model for granite under different confining pressure and injection rate

Author:

Long Xiting,Xie Heping,Liu Jie,Li Ning,Li Cunbao

Abstract

AbstractConventional hydraulic fracturing techniques are often found problematic for extracting geothermal energy in hot dry rock (HDR). As an alternative, employing the less viscous gas to replace water as the fracturing fluid showed great potential for more effective fracturing of HDR. In this work, the failure behavior and mechanism of granite during gas fracturing under different confining pressures and gas injection rates are comprehensively examined. It is shown that the breakdown pressure increases with the increase of confining pressure, whereas higher gas injection rate can result in evident decrease of the breakdown pressure. As the confining pressure grows, the acoustic emission (AE) event increases rapidly, with much higher AE counts observed at high gas injection rates than at low injection rates. Comparatively, the AE energy decreases under high confining pressure, due probably to granite transitioning from brittle to ductile. It is interesting that the b-value of AE varies dramatically as the gas injection rate becomes higher with significant fluctuations, indicating the ratio of large fracture and small fracture changes drastically during gas fracturing. In addition, the length of the induced fractures decreases with the increase of confining pressure during gas fracturing, and the length and width of vertical fractures are evidently larger when at high gas injection rate. Last, a novel theoretical predictive model is proposed for estimating breakdown pressure during gas fracturing based on the average tensile stress criteria, which is featured by considering the effect of confining pressure and gas flow behaviors. The theoretical prediction agrees with the experimental results. The present study can provide valuable results for theoretical analysis and engineering applications of gas fracturing in stimulating the HDR reservoirs.

Funder

Department of Science and Technology of Guangdong Province

NSFC

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3