Propagation and complex morphology of hydraulic fractures in lamellar shales based on finite-discrete element modeling

Author:

Wang Mengyao,Gan Quan,Wang Tao,Ma Yueqiang,Yan Chengzeng,Benson Philip,Wang Xiaoguang,Elsworth Derek

Abstract

AbstractWe explore the controls of stress magnitude and orientation relative to bedding on the resulting morphology/topology of hydraulic fractures using a combined finite-discrete element method (FDEM). Behavior is shown conditioned by the ratio of principal stresses $$\lambda ={\sigma }_{3}/{\sigma }_{1}$$ λ = σ 3 / σ 1 and relative inclination of the bedding. When the lateral pressure coefficient ($$\lambda$$ λ ) is less than 0.67, hydraulic fractures predominantly initiate as tensile fractures along the wellbore, aligning with the maximum principal stress direction. Conversely, for $$\lambda \ge 0.67$$ λ 0.67 , shear cracks are favored to initiate for the minor stress difference, leading to a less predictable initiation and extension direction. Simultaneously, diminished stress differences correspond to elevated reservoir breakdown pressures, displaying a linear correlation with lateral pressure coefficients and little influenced by equivalent bedding orientation. Bedding plane orientation significantly impacts the mode and morphology of hydraulic fracture propagation. Bedding parallel to the direction of the minimum principal stress ($${\sigma }_{3}$$ σ 3 ) favors layer-penetrating and bifurcated fractures, whereas inclined bedding facilitates the emergence of numerous steering-type and capture-type fractures. Especially at steeper inclinations ($$\beta =60^\circ$$ β = 60 ), hydraulic fractures readily extend along the bedding surface, inducing macroscopic shear slip failure. Under high-stress disparities, the breakdown pressure exhibits greater sensitivity to bedding inclination, and its influence pattern aligns with the variations in tensile strength, typically reaching maximum and minimum values at bedding inclination angles of 0° and 60°, respectively.

Funder

National Key Research and Development Program of China

General Program of National Natural Science Foundation of China

Science & Technology Department of Sichuan Province

CO2 Enhanced Shale Gas Recovery and Sequestration by Numerical Thermal-Hydro-Mechanical-Chemical modelling

G. Albert Shoemaker endowment

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3