Laboratory demonstration of the impact of weak interfaces and layered rock properties on hydraulic fracture containment and height growth

Author:

Lu Qiao,EI-Fayoumi Amr,Adachi Jose,Zaki Karim,Bunger AndrewORCID

Abstract

AbstractHydraulic fracturing and waterflooding are both widely applied methods for improving the recovery of oil and gas resources. These methods have increasing commonality because many waterfloods are being carried out at high enough pressure to generate hydraulic fractures. Even so, it is challenging for engineers to make an optimal wellbore pressure design for layered and otherwise complex underground formations. An overly aggressive injection pressure may lead to uncontrollable fracture height growth into non-producing layers adjacent to the reservoir. In contrast, when using classical but highly simplified height growth models, the pressure limits can be far too conservative which may lead to lower recovery rates and inefficient use of resources invested in developing producing reservoirs. Therefore, it is necessary to investigate the mechanism of fracture height growth while considering the coupling effect from multiple dominated factors. This research contributes an experimental approach to evaluating the role of stresses, weak interfaces, and mechanical properties of a three-layer system in promoting or containing hydraulic fracture height growth from a central reservoir into neighboring barrier layers. In all cases, the experiments agree that the pressure required to induce substantial height growth exceeds the stress applied to the barrier layers and is far above classical predictions. Additionally, when the reservoir layer is softer than the barriers, the containment is sustained to even higher pressures than for layers with similar material properties. Finally, the experiments show that permeability of the barrier layer can induce a more sudden transition to uncontrolled height growth when fracture reaches the bedding interfaces. Hydraulic fracture height growth is mitigated by weak interfaces between layers. Unstable height growth typically requires fluid pressure to exceed the in-situ stress in the bounding layer(s). Contrasting layer stiffness and permeability often leads to further mitigation of height growth.

Funder

Chevron

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3