Rapid assessment of water phase trapping on gas permeability reduction in typical tight gas reservoirs in China

Author:

Tian Jian,Chen Qiang,Kang Yili,Wang Yijun,Qin Chaozhong

Abstract

AbstractWater phase trapping (WPT) is one of the primary formation damage issues which can cause a steep drop in tight gas production. This paper presented a rapid assessment of the damage potential of WPT in Daniudi, Nanpu 5th, and Keshen 9th tight gas reservoirs involving shallow to ultra-deep layers in China. Typical core samples of the three tight gas reservoirs were selected to perform water imbibition and drainage experiments to mimic the WPT occurrence. After that, the damage degree to core gas permeability induced by WPT was evaluated. Results showed that, for a 16-h vertical water imbibition experiment, the core samples of Daniudi gas reservoir experienced the fastest water imbibition process while the core samples of Keshen 9th gas reservoir established the highest water saturation. After water removal, the ranges of damage degree to core gas permeability induced by the incremental water saturation were 36.07%–78.13%, 36.06%–56.21%, and 61.00%–76.30% in Daniudi, Nanpu 5th, and Keshen 9th tight gas reservoirs, respectively. It found that with the increasing formation depth, tight gas reservoirs can suffer greater damage from WPT not only because of the decline in rock permeability but also the salting out of high salinity formation water. In general, it holds that strong water capillary imbibition phenomenon, low water removal capacity, and high gas permeability damage degree are found to be the striking features of WPT potential on these typical tight gas reservoirs in China.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

State Key Laboratory of Coal Mine Disaster Dynamics and Control Project

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3