Study on deep learning methods for coal burst risk prediction based on mining-induced seismicity quantification

Author:

Cheng XianggangORCID,Qiao WeiORCID,He Hu

Abstract

AbstractThe assessment of Coal burst risk (CBR) is the premise of bump disaster prevention and control. It is the implementation criterion to guide various rock burst prevention and control measures. The existing static prediction and evaluation methods for CBR cannot be effectively combined with the results of underground dynamic monitoring. This study proposed a mining-induced seismicity information quantification method based on the fractal theory. Deep learning methods were used to construct a deep learning framework of coal burst risk (DLFR) based on the fractal dimension of microseismic information. Gray correlation analysis (GRA), information gain ratio (IGR), and Pearson correlation coefficient are used to screen and compare factors. Statistical evaluation indicators such as macro-F1, accuracy rate, and fitness curve were used to evaluate model performance. Taking the Gaojiapu coal mine as a case study, the performance of deep learning models such as BP Neural Network (BP), Support Vector Machine (SVM) and its optimized model based on particle swarm optimization (PSO) algorithm under this framework is discussed. The research results' reliability and validity are verified by comparing the predicted results with the actual results. The research results show that the prediction results of CBR in DLFR are consistent with the actual results, and the model is reliable and effective. The mining-induced seismicity quantification can solve the problem of insufficient training samples for the CBR. With this, different pressure relief measures can be formulated based on the results of the CBR predictions to achieve "graded" precise prevention and control.

Funder

China Scholarship Council

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3