Intelligent prediction method for fracture pressure based on stacking ensemble algorithm

Author:

Zhang Hao,Ren Yangfeng,Zhang Yan,Zheng Shuangjin

Abstract

AbstractFracture pressure is an important reference for wellbore stability analysis and hydraulic fracturing. Considering the low prediction accuracy, significant deviations, and limited applicability of traditional methods for predicting formation fracture pressure, this paper proposes an intelligent prediction method for fracture pressure using conventional well logging data based on the Stacking ensemble algorithm. The base learners of the model include RF, KNN, and LSTM algorithms with low correlation. The meta-learner adopts the XGBoost algorithm. The effectiveness of the model is validated using the fracture pressure data from Dagang Oilfield. The prediction results indicate that the stacking algorithm outperforms individual algorithms. After optimization with genetic algorithm, the R2 of the stacking model is 0.989, RMSE is 0.009%, and MAE is 0.32%. The global sensitivity analysis results show that AC and DEN in the well logging data have higher sensitivity to the fracture pressure. When using intelligent fracture pressure prediction methods, it is essential to ensure the accuracy of AC and DEN data. The work demonstrates the reliability and effectiveness of the method proposed for the intelligent prediction of fracturing pressure using conventional well logging data through Stacking ensemble algorithm to overcome the limitations of traditional methods.

Funder

National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing

Scientific Research Project of the Hubei Provincial Department of Education

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3