Numerical simulation of stress field reorientation in multi-fractures

Author:

Deng Yan,Mu Shuxing,Liu Yuxuan,Mu Na,Guo Jianchun,Zeng Jie,Yu Hao

Abstract

AbstractUnderstanding the stress state caused by a subsequent failure is crucial for successful refracturing. However, there are many differences between the stress reorientation phenomena of a multi-fracture horizontal well and that of a single fracture in a vertical well, including the interaction of multi-fractures. These factors can lead to a change in the stress field of multiple fractures, which is more complex than that of a single fracture. In this paper, based on the elastic theory of porous media and the mechanism of fluid–structure interaction, a finite element numerical model of multi-fracture stress fields is established. The net pressure loaded on the fracture wall was corrected using the fracture line model, which was solved using the separated coupling method with a staggered strategy, and a full coupling simulation of fluid flow and rock deformation was achieved. The results showed that with an increase in production time, the stress reorientation area around the fracture and at both ends first increased at a faster rate, then slowly decreased, and finally disappeared,indicating an optimal refracturing time window. This suggests that the greater the number of fractures, the greater the fracture inclination and fracture bending degree, and the more unfavorable it is for the formation and maintenance of the stress reorientation area near the fracture and at both ends of the fracture. The reorientation of the stress field between horizontal wells may lead to the fracture of the infill wells, causing bending and propagation towards the pressure-depletion area, thus reducing productivity.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3