Abstract
AbstractTo investigate the hydraulic fracture extension pattern of single-hole shale during hydraulic fracturing under fluid–solid coupling, this paper utilizes seepage–stress–damage coupling software to establish a mechanical model of hydraulic fracture initiation in single-hole shale under different pore pressure increments in seven groups. The results reveal that under the action of a single-hole pressure gradient, shale is destabilized and destroyed by shale instability after two damage degradations under the coupled action of hydraulic and peripheral pressures, the fracture network is fully developed, and the stress decreases sharply. The final damage pattern of the hydraulic fracture distribution is categorized into two types: “X” and “Y”. The hydraulic gradient under hydraulic fracturing is distributed as a closed-loop strip, the hydraulic gradient decreases layer by layer from the inside to the outside, the seepage field and stress field interact with each other, and the pore water pressure and stress are coupled with each other, resulting in increasingly complete fracture development.
Funder
the National Natural Science Foundation of China
Guizhou Science and Technology Fund
Scientific Research Project of Guiyang Rail Transit Line 2 Phase I Project
Guizhou Mining Power Disaster Early Warning and Control Technology Innovation Team
High-level Innovative Talents Training Project in Guizhou Province, China
Guizhou Outstanding Young Science and Technology Talent Program
Natural Science Special (Special Post) Scientific Research Fund Project of Guizhou University
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献