Numerical study of hydraulic fracturing on single-hole shale under fluid–solid coupling

Author:

Xia Xi,Wu ZhonghuORCID,Song Huailei,Wang Wentao,Cui Hengtao,Tang Motian

Abstract

AbstractTo investigate the hydraulic fracture extension pattern of single-hole shale during hydraulic fracturing under fluid–solid coupling, this paper utilizes seepage–stress–damage coupling software to establish a mechanical model of hydraulic fracture initiation in single-hole shale under different pore pressure increments in seven groups. The results reveal that under the action of a single-hole pressure gradient, shale is destabilized and destroyed by shale instability after two damage degradations under the coupled action of hydraulic and peripheral pressures, the fracture network is fully developed, and the stress decreases sharply. The final damage pattern of the hydraulic fracture distribution is categorized into two types: “X” and “Y”. The hydraulic gradient under hydraulic fracturing is distributed as a closed-loop strip, the hydraulic gradient decreases layer by layer from the inside to the outside, the seepage field and stress field interact with each other, and the pore water pressure and stress are coupled with each other, resulting in increasingly complete fracture development.

Funder

the National Natural Science Foundation of China

Guizhou Science and Technology Fund

Scientific Research Project of Guiyang Rail Transit Line 2 Phase I Project

Guizhou Mining Power Disaster Early Warning and Control Technology Innovation Team

High-level Innovative Talents Training Project in Guizhou Province, China

Guizhou Outstanding Young Science and Technology Talent Program

Natural Science Special (Special Post) Scientific Research Fund Project of Guizhou University

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3