Mechanical behaviors and failure characteristics of coal-rock combination under quasi-static and dynamic disturbance loading: a case based on a new equipment

Author:

Jing Suolin,Wen Zhijie,Jiang Yujing,Wen Jinhao,Du Wanjun

Abstract

AbstractThe dynamic disasters of deep mining coal and rock mass are frequent and easy to be instable. Aiming at the deformation of coal-rock roadway under the coupled static and dynamic load, a new equipment which can simulate the actual situation dynamic environment is used to carry out the coupled static-dynamic loading test of coal-rock combination. The failure law and mechanical behavior of combination are studied. Test results show that weak structure significantly affects mechanical response of coal-rock combination. The coal part with lower strength firstly reaches the crack initiation stress. The strength of the combination is dominated by the coal part. The post-peak stage of the stress–strain curve under the coupled static and dynamic load presents a stepped reduction, which shows yield process. The dynamic load level has a significant effect on the mechanical behaviors of the combination. The elastic modulus decreases under dynamic loading. The peak stress of the combination is positively correlated with the dynamic load level in a certain range, and the peak strain was negatively correlated. The energy accumulation and dissipation are closely related to the failure of the samples. The strain energy is more concentrated in the area where the failure occurs first. The AE energy under dynamic load is developed from the traditional “four-stages” characteristic under static load to three stages. The interval release stage appears because of the appearance of intermittent disturbance load makes the AE energy of the sample change intermittently. The dynamic instability of samples accompanies a sudden increase in AE energy rate, hysteresis loop area and strain. Compared with the shear failure of single lithology sample, the failure mode of the combinations is mainly tensile, and it turns into tensile-shear failure under dynamic load. The fragmentation of samples is different under different failure modes. The fragmentation index can characterize the failure mode and crack propagation characteristics of coal-rock combination. The research provides reference for large deformation dynamic disasters of surrounding rock.

Funder

National Natural Science Foundation of China

Shandong Excellent Youth Fund

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3