Author:
Zhou Jun,Zhao Guangming,Meng Xiangrui,Dong Chunliang,Qiao Yang,Yu Meilu
Abstract
AbstractWith depth increase of many mines, the damage of surrounding rock by high ground stress cannot be ignored under the blasting excavation method. In view of the strong disturbance of surrounding rock caused by dynamic excavation and unloading under high initial rock stress conditions, based on the elastic unloading theory, the analytical solution of dynamic excavation and unloading stress is given using the residue theorem and Laplace inverse transform. The stress field distribution under the coupling effect of blasting load and initial rock stress is described. By making a rock model and implementing biaxial loading using a drop hammer to simulate the impact load, radial cracks generated by the impact stress wave and circumferential cracks generated by unloading during excavation were captured, and the stress change curve during excavation was monitored. The monitoring curve and theoretical curve have consistency in trend. Under the coupling effect of blasting load and initial stress, surrounding rock will generate tensile stress and broken, and the unloading effect of initial stress occurs after the blasting load, which causes tensile damage to the surrounding rock. The stress field curve plotted by the theory explains well the crack propagation caused by the coupling effect of blasting load and initial stress.
Funder
National Natural Science Foundation of China
China Scholarship Council
University of Oulu
Publisher
Springer Science and Business Media LLC
Subject
Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献