Impact of injection rate ramp-up on nucleation and arrest of dynamic fault slip

Author:

Ciardo F.ORCID,Rinaldi A. P.

Abstract

AbstractFluid injection into underground formations reactivates preexisting geological discontinuities such as faults or fractures. In this work, we investigate the impact of injection rate ramp-up present in many standard injection protocols on the nucleation and potential arrest of dynamic slip along a planar pressurized fault. We assume a linear increasing function of injection rate with time, up to a given time $$t_c$$ t c after which a maximum value $$Q_m$$ Q m is achieved. Under the assumption of negligible shear-induced dilatancy and impermeable host medium, we solve numerically the coupled hydro-mechanical model and explore the different slip regimes identified via scaling analysis. We show that in the limit when fluid diffusion time scale $$t_w$$ t w is much larger than the ramp-up time scale $$t_c$$ t c , slip on an ultimately stable fault is essentially driven by pressurization at constant rate. Vice versa, in the limit when $$t_c/t_w \gg 1$$ t c / t w 1 , the pressurization rate, quantified by the dimensionless ratio $$\dfrac{Q_m t_w}{t_c Q^*}$$ Q m t w t c Q with $$Q^*$$ Q being a characteristic injection rate scale, does impact both nucleation time and arrest distance of dynamic slip. Indeed, for a given initial fault loading condition and frictional weakening property, lower pressurization rates delay the nucleation of a finite-sized dynamic event and increase the corresponding run-out distance approximately proportional to $$\propto \left( \dfrac{Q_m t_w}{t_c Q^*}\right) ^{-0.472}$$ Q m t w t c Q - 0.472 . On critically stressed faults, instead, the ramp-up of injection rate activates quasi-static slip which quickly turn into a run-away dynamic rupture. Its nucleation time decreases non-linearly with increasing value of $$\dfrac{Q_m t_w}{t_c Q^*}$$ Q m t w t c Q and it may precede (or not) the one associated with fault pressurization at constant rate only.

Funder

bundesamt für energie

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3