A micromechanical investigation of diagenetically-induced changes to the anisotropic elastic properties of calcareous mudstones

Author:

Graham Samuel P.,Aplin Andrew C.,Rouainia Mohamed,Ireland Mark T.,Armitage Peter J.

Abstract

AbstractMicroscale diagenetic changes that occur during burial exert a profound influence on the elastic and mechanical properties of sediments—but are poorly quantified. The focus here is on how diagenesis influences the elastic properties of carbonate-rich mudstones, which are subject to a wide range of physical and chemical changes. Nanoindentation data for gas-window (180 $$^\circ$$ C) Eagle Ford formation samples give intrinsic indentation moduli of the clay-sized calcite matrix of $$M =$$ M = 40–50 GPa, which contrasts with $$M =$$ M = 60–77 GPa for diagenetic calcite fills of foraminifera tests, closer to values for highly crystalline calcite. The matrix calcite is weakly anisotropic. Inverse analysis of immature (< 70 $$^\circ$$ C) organic-rich chalks gives much lower intrinsic indentation moduli for biogenic calcite, between 17 and 30 GPa; the calcite is also more anisotropic, with values of $$M_1/M_3 \sim$$ M 1 / M 3 1.3. Diagenesis, which includes recrystallisation and pore-filling cementation, results in calcite becoming elastically stiffer and behaving in an increasingly isotropic manner, in agreement with grain scale studies using atomic force microscopy. The results demonstrate that nanoindentation can resolve diagenetic contributions to the mechanical response of mudstones, and suggest intrinsic structural changes to calcite, in addition to diagenetic cementation, need to be accounted for in rock-physics models of mud-rich sediments.

Funder

Engineering and Physical Sciences Research Council

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3