A new three-dimensional rock strength criterion based on shape function in deviatoric plane

Author:

Gao Xiangsen,Wang Min,Li Cui,Zhang Mingming,Li Zhihong

Abstract

AbstractRock strength criteria are the theoretical grounding of geotechnical design and stability estimation, the Mohr–Coulomb (MC) and Hoek–Brown (HB) criteria are the widely accepted criteria at present, due to their reasonability and unambiguous concept, however they overlook the effect of intermediate principal stress, and contain six singular corners in π plane. Aimed at overcoming those limitations, the MC and normal parabolic criterion (NPC) were improved to their 3D versions that lead to smooth and convex for a wide range of strength parameters. The extended 3D strength criteria coincide with corresponding original forms in the triaxial compression and triaxial extension states, which not only take intermediate principal stress into account, but also provide great convenient in numerical calculation. Multigroup of poly-axial strength datasets gathered from the references are used to check the prediction accuracy of the proposed 3D criteria by the least absolute deviation method. Research proved that the 3D NPC criterion has a relatively larger deviation on poly-axial strength data prediction, but the proposed 3D MC criterion can describe peak strength with low misfit for soft or hard rocks. Peak strength σ1 increases first and then decreases with the increase of σ2, whether increasing or decreasing σ2, both will result in rock failure. Moreover, the 3D MC can fit the poly-axial strength data well for lower or higher values of σ3, which strongly suggests the proposed 3D MC criterion is adequate. Applicability of the proposed strength criterion will be discussed in further research.

Funder

Research and Innovation Team of Complex Oil and Gas Well Drilling Engineering

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3