Numerical investigation of the influence of discontinuity orientations on fault permeability evolution and slip displacement

Author:

Eyinla Dorcas S.ORCID,Gan Quan,Oladunjoye Michael A.,Olayinka Abel I.

Abstract

Abstract A pre-existing plane of weakness along the fault is comprised of a particular pattern of joints dipping at different orientations. The fault stress state, partially defined by the orientation of fault, determines the potential of slip failure and hence the evolution of fault permeability. Here the influence of fault orientation on permeability evolution was investigated by direct fluid injection inside fault with three different sets of fault orientations (45°, 60° and 110°), through the coupled hydromechanical (H-M) model TOUGHREACT-FLAC3D. The influence of joints pattern on slip tendency and magnitude of potential induced seismicity was also evaluated by comparing the resulted slip distance and timing. The simulation results revealed that decreasing the dip angle of the fault increases the corresponding slip tendency in the normal fault circumstance. Also, with changing joints dip angle associated with the fault, the tendency of the fault slip changes concurrently with the permeability evolution in a noticeable manner. Permeability enhancement after the onset of fault slip was observed with the three sets of fault angles, while the condition of 60° dipping angle resulted in highest enhancement. Joints pattern with a dip angle of 145° (very high dip) and 30° (very low dip) did not trigger a shear slip with seismic permeability enhancement. However, high dip and intermediate dip angles (135°, 50° and 70°) yielded high permeability in varying orders of magnitude. The large stress excitation and increasing permeability during shear deformation was noticeably high in intermediate joint dip angles but decreases as the angle increases. Article highlights The magnitude of injection-induced permeability enhancement is largely influenced by the fault and joint spatial orientations. With a slight change in the joint direction, there is an increasing possibility for fault to approach a different critical state of failure. Stress elevation at the point of failure is controlled by the orientations of fault/joint planes with respect to the direction of maximum principal stress.

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3