A novel evaluation method of natural gas hydrate saturation in reservoirs based on the equivalent medium theory

Author:

Zhang Qiangui,Li Quanshan,Fan Xiangyu,Chen Yufei,Wang Zhaoxiang,Yao Bowei,Wei Na,Zhao Jun

Abstract

AbstractNatural gas hydrate saturation (NGHS) in reservoirs is one of the critical parameters for evaluating natural gas hydrate resource reserves. Current widely-accepted evaluation methods developed for evaluating conventional natural gas saturation in reservoirs, to some extents, are not sufficient enough to obtain accurate predicted results. In light of the equivalent medium theory, the natural gas hydrate is regarded as the fluid (Mode A) when NGHS is relatively low, while it is regarded as the rock matrix (Mode B) when NGHS is high. Two mathematical model are then developed for evaluating NGHS at Mode A and B. Experimental verification shows that R2 of the predicted results based upon the proposed model is 0.968, and the average absolute relative error percentage is 8.90%. The error of the predicted results gradually decreases with increasing NGHS, whereas increases with increasing confining pressure. In addition, the proposed model has been applied to the 142.9–147.7 m well section of Well DK-1 in the permafrost region, Qilian Mountains. The results show that the error of the predicted results is less than 13.92%, with its average error being 10.51%. The predicted value gradually increases with its error decreasing as the depth continues to increase, which is consistent with the change behavior of measured data. NGHS evaluation method proposed in this paper fully considers the occurrence form of natural gas hydrate in reservoirs. The model parameters are easy to determine and the predicted results are reliable.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3