Slope instability mechanism with differential rock mass structure along a fault: a mine landslide from Southwest China

Author:

Wei Tao,Chen GuoQing,Zhu Zhou,Tang Peng,Yan Ming

Abstract

AbstractMine slope stability and mining sustainability are related to the local geological structures, which could change the rock mass structure in deep mining. After 20 years mining in a mudstone mine, western China, the slope structure transforms from anti-dipping structure into a bedding structure by a recently discovered fault (F1), further inducing the two landslides (Landslide #I and Landslide #II). Landslide investigation suggested the residual deposits in Landslide #I first slid over 100 m and overburdened the rear of Landslide #II. The bedding rock with weak interlayers at footwall is separated from the anti-dipping rock at the hanging wall by F1. After excavation, a weak interlayer was exposed and softened by rainfall, resulting in the slip of footwall rock mass and further inducing large scale toppling deformation. The fragmented rock mass sliding along a weak interlayer triggers consequent deformation of adjacent slope, reducing safety reserve of the open mine. The discrete element analysis reveals that the bedding rock mass of footwall slid once the weak interlayer was exposed by mining. And retrogressive deformation transmitted to the hanging wall and induced bending and toppling deformation of anti-dipping rock mass. Mine feasibility assessment should recognize the potential deep geological structures as important in the future.

Funder

National Natural Science Foundation of China

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3