Abstract
AbstractSystematic collections of single-gene deletions have been invaluable in uncovering determinants of lifespan in yeast. Overexpression of a single gene does not have such a clear outcome as cancellation of its function but it can lead to a variety of imbalances, deregulations and compensations, and some of them could be important for longevity. We report an experiment in which a genome-wide collection of strains overexpressing a single gene was assayed for chronological lifespan (CLS). Only one group of proteins, those locating to the inner membrane and matrix of mitochondria, tended to extend CLS when abundantly overproduced. We selected two such strains—one overexpressing Qcr7 of the respiratory complex III, the other overexpressing Mrps28 of the small mitoribosomal subunit—and analyzed their transcriptomes. The uncovered shifts in RNA abundance in the two strains were nearly identical and highly suggestive. They implied a distortion in the co-translational assembly of respiratory complexes followed by retrograde signaling to the nucleus. The consequent reprogramming of the entire cellular metabolism towards the resistance to stress resulted in an enhanced ability to persist in a non-proliferating state. Our results show that surveillance of the inner mitochondrial membrane integrity is of outstanding importance for the cell. They also demonstrate that overexpression of single genes could be used effectively to elucidate the mitochondrion-nucleus crosstalk.
Publisher
Springer Science and Business Media LLC
Subject
Geriatrics and Gerontology,Gerontology,Ageing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献