Role of H4K16 acetylation in 53BP1 recruitment to double-strand break sites in in vitro aged cells

Author:

González-Bermúdez LourdesORCID,Genescà AnnaORCID,Terradas MarionaORCID,Martín MartaORCID

Abstract

AbstractIncreased frequency of DNA double strand breaks (DSBs) with aging suggests an age-associated decline in DSB repair efficiency, which is also influenced by the epigenetic landscape. H4 acetylation at lysine 16 (H4K16Ac) has been related to DSB repair since deacetylation of this mark is required for efficient 53BP1 recruitment to DSBs. Although age-associated changes in H4K16Ac levels have been studied, their contribution to age-related DSB accumulation remains unknown. In vitro aged Human Dermal Fibroblasts (HDFs) display lower levels of H4K16A that correlate with reduced recruitment of 53BP1 to basal DSBs. Following DNA damage induction, early passage (EP) cells suffered from a transient H4K16 deacetylation that allowed proper 53BP1 recruitment to DSBs. In contrast, to reach this specific and optimum level, aged cells responded by increasing their overall lower H4K16Ac levels. Induced hyperacetylation of late passage (LP) cells using trichostatin A increased H4K16Ac levels but did not ameliorate 53BP1 recruitment. Instead, deacetylation induced by MOF silencing reduced H4K16Ac levels and compromised 53BP1 recruitment in both EP and LP cells. Age-associated decrease of H4K16Ac levels contributes to the repair defect displayed by in vitro aged cells. H4K16Ac responds to DNA damage in order to reach a specific, optimum level that allows proper 53BP1 recruitment. This response may be compromised with age, as LP cells depart from lower H4K16Ac levels. Variations in H4K16Ac following the activation of the DNA damage response and aging point at this histone mark as a key mediator between DNA repair and age-associated chromatin alterations.

Funder

Departament de Salut, Generalitat de Catalunya

Universitat Autònoma de Barcelona

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology,Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3