Skip to main content
Log in

Abstract

Many different types of phases can form within alloys, from highly-ordered intermetallic compounds, to structurally-ordered but chemically-disordered solid solutions, and structurally-disordered (i.e. amorphous) metallic glasses. The different types of phases display very different properties, so predicting phase formation is important for understanding how materials will behave. Here, we review how first-principles data from the AFLOW repository and the aflow++ software can be used to predict phase formation in alloys, and describe some general trends that can be deduced from the data, particularly with respect to the importance of disorder and entropy in multicomponent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Massalski, T.B., H. Okamoto, P.R. Subramanian, and L. Kacprzak (eds.). 1990. Binary Alloy Phase Diagrams. Materials Park: ASM International.

    Google Scholar 

  2. Curtarolo, S., D. Morgan, and G. Ceder. 2005. Accuracy of Ab Initio Methods in Predicting the Crystal Structures of Metals: A Review of 80 Binary Alloys. Calphad 29: 163–211. https://doi.org/10.1016/j.calphad.2005.01.002.

    Article  CAS  Google Scholar 

  3. Gao, M.C. 2016. Design of High-Entropy Alloys. In High-Entropy Alloys: Fundamentals and Applications, ed. M.C. Gao, J.-W. Yeh, P.K. Liaw, and Y. Zhang, 369–398. Cham: Springer.

    Chapter  Google Scholar 

  4. George, E.P., D. Raabe, and R.O. Ritchie. 2019. High-Entropy Alloys. Nat. Rev. Mater. 4(8): 515–534. https://doi.org/10.1038/s41578-019-0121-4.

    Article  ADS  CAS  Google Scholar 

  5. Toher, C., C. Oses, M. Esters, D. Hicks, G. Kotsonis, C.M. Rost, D.W. Brenner, J.-P. Maria, and S. Curtarolo. 2022. High-Entropy Ceramics: Propelling Applications Through Disorder. MRS Bull. 47: 194–202. https://doi.org/10.1557/s43577-022-00281-x.

    Article  ADS  CAS  Google Scholar 

  6. Miracle, D.B. 2019. High Entropy Alloys as a Bold Step Forward in Alloy Development. Nat. Commun. 10: 1805. https://doi.org/10.1038/s41467-019-09700-1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Senkov, O.N., J.D. Miller, D.B. Miracle, and C. Woodward. 2015. Accelerated Exploration of Multi-principal Element Alloys with Solid Solution Phases. Nat. Commun. 6: 6529. https://doi.org/10.1038/ncomms7529.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Greer, A.L. 1993. Confusion by Design. Nature 366(6453): 303–304. https://doi.org/10.1038/366303a0.

    Article  ADS  Google Scholar 

  9. Greer, A.L. 2009. Metallic Glasses...on the Threshold. Mater. Today 12: 14–22. https://doi.org/10.1016/S1369-7021(09)70037-9.

    Article  CAS  Google Scholar 

  10. Johnson, W.L. 1999. Bulk Glass-Forming Metallic Alloys: Science and Technology. MRS Bull. 24(10): 42–56. https://doi.org/10.1557/S0883769400053252.

    Article  CAS  Google Scholar 

  11. Greer, A.L. 2015. New Horizons for Glass Formation and Stability. Nat. Mater. 14(6): 542–546. https://doi.org/10.1038/nmat4292.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Miracle, D.B. 2004. A Structural Model for Metallic Glasses. Nat. Mater. 3(10): 697–702. https://doi.org/10.1038/nmat1219.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Li, Z., K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan. 2016. Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-ductility Trade-Off. Nature 534: 227–230. https://doi.org/10.1038/nature17981.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Li, Z., C.C. Tasan, H. Springer, B. Gault, and D. Raabe. 2017. Interstitial Atoms Enable Joint Twinning and Transformation Induced Plasticity in Strong and Ductile High-Entropy Alloys. Sci. Rep. 7(1): 40704. https://doi.org/10.1038/srep40704.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schroers, J., T.M. Hodges, G. Kumar, H. Raman, A.J. Barnes, Q. Pham, and T.A. Waniuk. 2011. Thermoplastic Blow Molding of Metals. Mater. Today 14(1–2): 14–19. https://doi.org/10.1016/S1369-7021(11)70018-9.

    Article  Google Scholar 

  16. Cahn, J.W. 1961. On Spinodal Decomposition. Acta Metall. 9(9): 795–801. https://doi.org/10.1016/0001-6160(61)90182-1.

    Article  CAS  Google Scholar 

  17. Cahn, J.W. 1962. On Spinodal Decomposition in Cubic Crystals. Acta Metall. 10(3): 179–183. https://doi.org/10.1016/0001-6160(62)90114-1.

    Article  CAS  Google Scholar 

  18. Cahn, J.W. 1963. Hardening by Spinodal Decomposition. Acta Metall. 11(12): 1275–1282. https://doi.org/10.1016/0001-6160(63)90022-1.

    Article  CAS  Google Scholar 

  19. Yang, X., and Y. Zhang. 2012. Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys. Mater. Chem. Phys. 132(2): 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021.

    Article  CAS  Google Scholar 

  20. Kaufman, L., and H. Bernstein. 1970. Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals. Refractory Materials. New York: Academic Press.

    Google Scholar 

  21. Gao, M.C., and D.E. Alman. 2013. Searching for Next Single-Phase High-Entropy Alloy Compositions. Entropy 15: 4504–4519. https://doi.org/10.3390/e15104504.

    Article  ADS  CAS  Google Scholar 

  22. Zhang, F., C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner. 2014. An Understanding of High Entropy Alloys from Phase Diagram Calculations. Calphad 45: 1–10. https://doi.org/10.1016/j.calphad.2013.10.006.

    Article  CAS  Google Scholar 

  23. Thermo-Calc Software Thermo-Calc Software Database SSOL version 5, https://thermocalc.com/products/databases/general-alloys-and-pure-substances/ (2023)

  24. European Cooperation in Science and Technology (COST): 507 - thermochemical database for light metal alloys. https://op.europa.eu/en/publication-detail/-/publication/35a95440-10ac-45f3-bd90-0fe0a0006aaf 2023.

  25. Kresse, G., and J. Hafner. 1993. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 47: 558–561. https://doi.org/10.1103/PhysRevB.47.558.

    Article  ADS  CAS  Google Scholar 

  26. de Fontaine, D. 1994. Cluster Approach to Order-Disorder Transformations in Alloys. In Solid State Physics, ed. H. Ehrenreich and D. Turnbull, vol. 47, 33–176. New York: Academic Press.

    Google Scholar 

  27. van de Walle, A., and M.D. Asta. 2002. Self-Driven Lattice-Model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams. Model. Simul. Mater. Sci. Eng. 10(5): 521. https://doi.org/10.1088/0965-0393/10/5/304.

    Article  ADS  Google Scholar 

  28. van de Walle, A., M. Asta, and G. Ceder. 2002. The Alloy Theoretic Automated Toolkit: A User Guide. Calphad 26: 539–553. https://doi.org/10.1016/S0364-5916(02)80006-2.

    Article  Google Scholar 

  29. Hart, G.L.W., T. Mueller, C. Toher, and S. Curtarolo. 2021. Machine Learning and Alloys. Nat. Rev. Mater. 6: 730–755. https://doi.org/10.1038/s41578-021-00340-w.

    Article  ADS  Google Scholar 

  30. Widom, M. 2016. Prediction of Structure and Phase Transformations. In High-Entropy Alloys: Fundamentals and Applications, ed. M.C. Gao, J.-W. Yeh, P.K. Liaw, and Y. Zhang, 8. Cham: Springer.

    Google Scholar 

  31. Huhn, W.P., and M. Widom. 2013. Prediction of A2 to B2 Phase Transition in the High Entropy Alloy Mo-Nb-Ta-W. JOM 65: 1772–1779. https://doi.org/10.1007/s11837-013-0772-3.

    Article  ADS  CAS  Google Scholar 

  32. Widom, M. 2016. Entropy and Diffuse Scattering: Comparison of NbTiVZr and CrMoNbV. Metall. Mater. Trans. A 47: 3306–3311. https://doi.org/10.1007/s11661-015-3095-x.

    Article  CAS  Google Scholar 

  33. Lederer, Y., C. Toher, K.S. Vecchio, and S. Curtarolo. 2018. The Search for High Entropy Alloys: A High-Throughput Ab-Initio Approach. Acta Mater. 159: 364–383. https://doi.org/10.1016/j.actamat.2018.07.042.

    Article  ADS  CAS  Google Scholar 

  34. Oses, C., M. Esters, D. Hicks, S. Divilov, H. Eckert, R. Friedrich, M.J. Mehl, A. Smolyanyuk, X. Campilongo, A. van de Walle, J. Schroers, A.G. Kusne, I. Takeuchi, E. Zurek, M. Buongiorno Nardelli, M. Fornari, Y. Lederer, O. Levy, C. Toher, and S. Curtarolo. 2023. aflow++: A C++ Framework for Autonomous Materials Design. Comput. Mater. Sci. 217: 111889. https://doi.org/10.1016/j.commatsci.2022.111889.

    Article  Google Scholar 

  35. Curtarolo, S., W. Setyawan, G.L. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, and M.J. Mehl. 2012. AFLOW: An Automatic Framework for High-Throughput Materials Discovery. Comput. Mater. Sci. 58: 218–226. https://doi.org/10.1016/j.commatsci.2012.02.005.

    Article  CAS  Google Scholar 

  36. Toher, C., C. Oses, J.J. Plata, D. Hicks, F. Rose, O. Levy, M. de Jong, M. Asta, M. Fornari, M. Buongiorno Nardelli, and S. Curtarolo. 2017. Combining the AFLOW GIBBS and Elastic Libraries to Efficiently and Robustly Screen Thermomechanical Properties of Solids. Phys. Rev. Mater. 1: 015401. https://doi.org/10.1103/PhysRevMaterials.1.015401.

    Article  Google Scholar 

  37. Plata, J.J., P. Nath, D. Usanmaz, J. Carrete, C. Toher, M. de Jong, M.D. Asta, M. Fornari, M. Buongiorno Nardelli, and S. Curtarolo. 2017. An Efficient and Accurate Framework for Calculating Lattice Thermal Conductivity of Solids: AFLOW-AAPL Automatic Anharmonic Phonon Library. npj Comput. Mater. 3(45): 45. https://doi.org/10.1038/s41524-017-0046-7.

    Article  ADS  CAS  Google Scholar 

  38. Yang, K., C. Oses, and S. Curtarolo. 2016. Modeling Off-Stoichiometry Materials with a High-Throughput Ab-Initio Approach. Chem. Mater. 28(18): 6484–6492. https://doi.org/10.1021/acs.chemmater.6b01449.

    Article  CAS  Google Scholar 

  39. Hart, G.L.W., S. Curtarolo, T.B. Massalski, and O. Levy. 2013. Comprehensive Search for New Phases and Compounds in Binary Alloy Systems Based on Platinum-Group Metals, Using a Computational First-Principles Approach. Phys. Rev. X 3: 041035. https://doi.org/10.1103/PhysRevX.3.041035.

    Article  CAS  Google Scholar 

  40. Carrete, J., N. Mingo, S. Wang, and S. Curtarolo. 2014. Nanograined Half-Heusler Semiconductors as Advanced Thermoelectrics: An Ab Initio High-Throughput Statistical Study. Adv. Func. Mater. 24: 7427–7432. https://doi.org/10.1002/adfm.201401201.

    Article  CAS  Google Scholar 

  41. Levy, O., M. Jahnátek, R.V. Chepulskii, G.L.W. Hart, and S. Curtarolo. 2011. Ordered Structures in Rhenium Binary Alloys from First-Principles Calculations. J. Am. Chem. Soc. 133(1): 158–163. https://doi.org/10.1021/ja1091672.

    Article  CAS  PubMed  Google Scholar 

  42. Setyawan, W., and S. Curtarolo. 2010. High-Throughput Electronic Band Structure Calculations: Challenges and Tools. Comput. Mater. Sci. 49: 299–312. https://doi.org/10.1016/j.commatsci.2010.05.010.

    Article  Google Scholar 

  43. Levy, O., G.L.W. Hart, and S. Curtarolo. 2010. Structure Maps for hcp Metals from First-Principles Calculations. Phys. Rev. B 81: 174106. https://doi.org/10.1103/PhysRevB.81.174106.

    Article  ADS  CAS  Google Scholar 

  44. Levy, O., R.V. Chepulskii, G.L.W. Hart, and S. Curtarolo. 2010. The New Face of Rhodium Alloys: Revealing Ordered Structures from First Principles. J. Am. Chem. Soc. 132: 833–837. https://doi.org/10.1021/ja908879y.

    Article  CAS  PubMed  Google Scholar 

  45. Levy, O., G.L.W. Hart, and S. Curtarolo. 2010. Uncovering Compounds by Synergy of Cluster Expansion and High-Throughput Methods. J. Am. Chem. Soc. 132: 4830–4833. https://doi.org/10.1021/ja9105623.

    Article  CAS  PubMed  Google Scholar 

  46. Oses, C., C. Toher, and S. Curtarolo. 2018. Data-Driven Design of Inorganic Materials with the Automatic Flow Framework for Materials Discovery. MRS Bull. 43: 670–675. https://doi.org/10.1557/mrs.2018.207.

    Article  Google Scholar 

  47. Kresse, G., and J. Furthmüller. 1996. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 54: 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  ADS  CAS  Google Scholar 

  48. Kresse, G., and D. Joubert. 1999. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 59: 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  ADS  CAS  Google Scholar 

  49. Martin, R.M. 2004. Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  50. Mehl, M.J., D. Hicks, C. Toher, O. Levy, R.M. Hanson, G.L.W. Hart, and S. Curtarolo. 2017. The AFLOW Library of Crystallographic Prototypes: Part 1. Comput. Mater. Sci. 136: 1–828. https://doi.org/10.1016/j.commatsci.2017.01.017.

    Article  CAS  Google Scholar 

  51. Hicks, D., M.J. Mehl, E. Gossett, C. Toher, O. Levy, R.M. Hanson, G.L.W. Hart, and S. Curtarolo. 2019. The AFLOW Library of Crystallographic Prototypes: Part 2. Comput. Mater. Sci. 161: 1–1011. https://doi.org/10.1016/j.commatsci.2018.10.043.

    Article  CAS  Google Scholar 

  52. Hicks, D., M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo. 2021. The AFLOW Library of Crystallographic Prototypes: Part 3. Comput. Mater. Sci. 199: 110450. https://doi.org/10.1016/j.commatsci.2021.110450.

    Article  CAS  Google Scholar 

  53. Esters, M., C. Oses, S. Divilov, H. Eckert, R. Friedrich, D. Hicks, M.J. Mehl, F. Rose, A. Smolyanyuk, A. Calzolari, X. Campilongo, C. Toher, and S. Curtarolo. 2023. aflow.org: A Web Ecosystem of Databases, Software and Tools. Comput. Mater. Sci. 216: 111808. https://doi.org/10.1016/j.commatsci.2022.111808.

    Article  Google Scholar 

  54. Curtarolo, S., W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno Nardelli, N. Mingo, and O. Levy. 2012. AFLOWLIB.ORG: A Distributed Materials Properties Repository from High-Throughput Ab Initio Calculations. Comput. Mater. Sci. 58: 227–235. https://doi.org/10.1016/j.commatsci.2012.02.002.

    Article  CAS  Google Scholar 

  55. Taylor, R.H., F. Rose, C. Toher, O. Levy, K. Yang, M. Buongiorno Nardelli, and S. Curtarolo. 2014. A RESTful API for Exchanging Materials Data in the AFLOWLIB.org Consortium. Comput. Mater. Sci. 93: 178–192. https://doi.org/10.1016/j.commatsci.2014.05.014.

    Article  Google Scholar 

  56. Calderon, C.E., J.J. Plata, C. Toher, C. Oses, O. Levy, M. Fornari, A. Natan, M.J. Mehl, G. Hart, M.B. Nardelli, and S. Curtarolo. 2015. The AFLOW Standard for High-Throughput Materials Science Calculations. Comput. Mater. Sci. 108: 233–238. https://doi.org/10.1016/j.commatsci.2015.07.019.

    Article  CAS  Google Scholar 

  57. Rose, F., C. Toher, E. Gossett, C. Oses, M. Buongiorno Nardelli, M. Fornari, and S. Curtarolo. 2017. AFLUX: The LUX Materials Search API for the AFLOW Data Repositories. Comput. Mater. Sci. 137: 362–370. https://doi.org/10.1016/j.commatsci.2017.04.036.

    Article  Google Scholar 

  58. Toher, C., C. Oses, D. Hicks, and S. Curtarolo. 2019. Unavoidable Disorder and Entropy in Multi-Component Systems. npj Comput. Mater. 5: 69. https://doi.org/10.1038/s41524-019-0206-z.

    Article  ADS  Google Scholar 

  59. Miracle, D.B., and O.N. Senkov. 2017. A Critical Review of High Entropy Alloys and Related Concepts. Acta Mater. 122: 448–511. https://doi.org/10.1016/j.actamat.2016.08.081.

    Article  ADS  CAS  Google Scholar 

  60. Rost, C.M., E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, and J.-P. Maria. 2015. Entropy-Stabilized Oxides. Nat. Commun. 6(8485): 8485. https://doi.org/10.1038/ncomms9485.

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Sarker, P., T. Harrington, C. Toher, C. Oses, M. Samiee, J.-P. Maria, D.W. Brenner, K.S. Vecchio, and S. Curtarolo. 2018. High-Entropy High-Hardness Metal Carbides Discovered by Entropy Descriptors. Nat. Commun. 9(1): 4980. https://doi.org/10.1038/s41467-018-07160-7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Friedrich, R., D. Usanmaz, C. Oses, A. Supka, M. Fornari, M. Buongiorno Nardelli, C. Toher, and S. Curtarolo. 2019. Coordination Corrected Ab Initio Formation Enthalpies. npj Comput. Mater. 5: 59. https://doi.org/10.1038/s41524-019-0192-1.

    Article  ADS  CAS  Google Scholar 

  63. Friedrich, R., M. Esters, C. Oses, S. Ki, M.J. Brenner, D. Hicks, M.J. Mehl, C. Toher, and S. Curtarolo. 2021. Automated Coordination Corrected Enthalpies with AFLOW-CCE. Phys. Rev. Mater. 5: 043803. https://doi.org/10.1103/PhysRevMaterials.5.043803.

    Article  CAS  Google Scholar 

  64. Chen, W., J. Ketkaew, Z. Liu, R.M. Ojeda Mota, K. O’Brien, C.S. da Silva, and J. Schroers. 2015. Does the Fracture Toughness of Bulk Metallic Glasses Scatter? Scr. Mater. 107: 1–4. https://doi.org/10.1016/j.scriptamat.2015.05.003.

    Article  CAS  Google Scholar 

  65. Schroers, J., and N. Paton. 2006. Amorphous Metal Alloys Form Like Plastics. Adv. Mater. Processes 164: 61.

    CAS  Google Scholar 

  66. Kaltenboeck, G., M.D. Demetriou, S. Roberts, and W.L. Johnson. 2016. Shaping Metallic Glasses by Electromagnetic Pulsing. Nat. Commun. 7: 10576. https://doi.org/10.1038/ncomms10576.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schroers, J. 2010. Processing of Bulk Metallic Glass. Adv. Mater. 22(14): 1566–1597. https://doi.org/10.1002/adma.200902776.

    Article  CAS  PubMed  Google Scholar 

  68. Johnson, W.L., J.H. Na, and M.D. Demetriou. 2016. Quantifying the Origin of Metallic Glass Formation. Nat. Commun. 7: 10313. https://doi.org/10.1038/ncomms10313.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ashby, M.F., and A.L. Greer. 2006. Metallic Glasses as Structural Materials. Scr. Mater. 54(3): 321–326. https://doi.org/10.1016/j.scriptamat.2005.09.051.

    Article  CAS  Google Scholar 

  70. Ford, D.C., D. Hicks, C. Oses, C. Toher, and S. Curtarolo. 2019. Metallic Glasses for Biodegradable Implants. Acta Mater. 176: 297–305. https://doi.org/10.1016/j.actamat.2019.07.008.

    Article  ADS  CAS  Google Scholar 

  71. Perim, E., D. Lee, Y. Liu, C. Toher, P. Gong, Y. Li, W.N. Simmons, O. Levy, J.J. Vlassak, J. Schroers, and S. Curtarolo. 2016. Spectral Descriptors for Bulk Metallic Glasses Based on the Thermodynamics of Competing Crystalline Phases. Nat. Commun. 7: 12315. https://doi.org/10.1038/ncomms12315.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Daams, J.L.C., and P. Villars. 2000. Atomic Environments in Relation to Compound Prediction. Eng. Appl. Artif. Intel. 13: 507. https://doi.org/10.1016/S0952-1976(00)00029-4.

    Article  Google Scholar 

  73. Daams, J.L.C., J.H.N. van Vucht, and P. Villars. 1992. Atomic-Environment Classification of the Cubic “intermetallic’’ Structure Types. J. Alloys Compd. 182(1): 1–33. https://doi.org/10.1016/0925-8388(92)90570-Y.

    Article  CAS  Google Scholar 

  74. Lim, X. 2016. Mixed-Up Metals Make for Stronger, Tougher, Stretchier Alloys. Nature 533: 306–307. https://doi.org/10.1038/533306a.

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Gludovatz, B., A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie. 2014. A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications. Science 345: 1153–1158. https://doi.org/10.1126/science.1254581.

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Rohr, F., M.J. Winiarski, J. Tao, T. Klimczuk, and R.J. Cava. 2016. Effect of Electron Count and Chemical Complexity in the Ta-Nb-Hf-Zr-Ti High-Entropy Alloy Superconductor. Proc. Natl. Acad. Sci. 113: 7144–7150. https://doi.org/10.1073/pnas.1615926113.

    Article  CAS  Google Scholar 

  77. Sanchez, J.M., F. Ducastelle, and D. Gratias. 1984. Generalized Cluster Description of Multicomponent Systems. Physica A 128: 334–350.

    Article  ADS  MathSciNet  Google Scholar 

  78. Sher, A., M. Schilfgaarde, A.-B. Chen, and W. Chen. 1987. Quasichemical Approximation in Binary Alloys. Phys. Rev. B 36: 4279. https://doi.org/10.1103/PhysRevB.36.4279.

    Article  ADS  CAS  Google Scholar 

  79. Berding, M.A., and A. Sher. 1998. Electronic Quasichemical Formalism: Application to Arsenic Deactivation in Silicon. Phys. Rev. B 58: 3853. https://doi.org/10.1103/PhysRevB.58.3853.

    Article  ADS  CAS  Google Scholar 

  80. Kullback, S., and R.A. Leibler. 1951. On Information and Sufficiency. Ann. Math. Stat. 22: 79–86. https://doi.org/10.1214/aoms/1177729694.

    Article  MathSciNet  Google Scholar 

  81. Esters, M., C. Oses, D. Hicks, M.J. Mehl, M. Jahnátek, M.D. Hossain, J.-P. Maria, D.W. Brenner, C. Toher, and S. Curtarolo. 2021. Settling the Matter of the Role of Vibrations in the Stability of High-Entropy Carbides. Nat. Commun. 12: 5747. https://doi.org/10.1038/s41467-021-25979-5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harrington, T.J., J. Gild, P. Sarker, C. Toher, C.M. Rost, O.F. Dippo, C. McElfresh, K. Kaufmann, E. Marin, L. Borowski, P.E. Hopkins, J. Luo, S. Curtarolo, D.W. Brenner, and K.S. Vecchio. 2019. Phase Stability and Mechanical Properties of Novel High Entropy Transition Metal Carbides. Acta Mater. 166: 271–280. https://doi.org/10.1016/j.actamat.2018.12.054.

    Article  ADS  CAS  Google Scholar 

  83. Hossain, M.D., T. Borman, A. Kumar, X. Chen, A. Khosravani, S.R. Kalidindi, E.A. Paisley, M. Esters, C. Oses, C. Toher, S. Curtarolo, J.M. LeBeau, D. Brenner, and J.-P. Maria. 2021. Carbon Stoichiometry and Mechanical Properties of High Entropy Carbides. Acta Mater. 215: 117051. https://doi.org/10.1016/j.actamat.2021.117051.

    Article  CAS  Google Scholar 

  84. Hossain, M.D., T. Borman, C. Oses, M. Esters, C. Toher, L. Feng, A. Kumar, W.G. Fahrenholtz, S. Curtarolo, D. Brenner, J.M. LeBeau, and J.-P. Maria. 2021. Entropy Landscaping of High-Entropy Carbides. Adv. Mater. 33(42): 2102904. https://doi.org/10.1002/adma.202102904.

    Article  CAS  Google Scholar 

  85. Calzolari, A., C. Oses, C. Toher, M. Esters, X. Campilongo, S.P. Stepanoff, D.E. Wolfe, and S. Curtarolo. 2022. Plasmonic High-Entropy Carbides. Nat. Commun. 13: 5993. https://doi.org/10.1038/s41467-022-33497-1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. S. Divilov, H. Eckert, C. Oses, D. Hicks, M. Esters, M. Mehl, S. Griesemer, R. Friedrich and X. Campilongo for insightful discussions. CT acknowledges support from National Science Foundation (DMR-2219788). SC acknowledges support from ONR (N000142112515). This work was supported by high-performance computer time and resources from the DoD High Performance Computing Modernization Program (Frontier).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cormac Toher or Stefano Curtarolo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of Thaddeus B. “Ted” Massalski. The issue was organized by David E. Laughlin, Carnegie Mellon University; John H. Perepezko, University of Wisconsin-Madison; Wei Xiong, University of Pittsburgh; and JPED Editor-in-Chief Ursula Kattner, National Institute of Standards and Technology (NIST).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toher, C., Curtarolo, S. AFLOW for Alloys. J. Phase Equilib. Diffus. (2024). https://doi.org/10.1007/s11669-024-01084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11669-024-01084-0

Keywords

Navigation