Beyond the Parallel Tangent Method to Predict the Composition of the First Nucleating Phase from Oversaturated Solutions

Author:

Kaptay George

Abstract

AbstractThe parallel tangent method widely applied to predict the composition and driving force to form a nucleus from an oversaturated solution is extended in this paper. The parallel tangent method is shown to (i) Over-estimates the composition difference between the first nucleus and the parent phase, (ii) Neglects the composition dependence of interfacial energies and (iii) Neglects the composition dependence of probability to form embryos prior to nucleation. New model equations are developed here for the composition dependence of the interfacial energies and probability to form the embryos as function of nucleus composition at given matrix composition. The most probable composition of the first nucleus is found at the maximum of the driving force of nucleation extended by the new model equations. The success of the extended method is demonstrated for an Al-Fe liquid alloy with 0.3 w% of Fe to predict the first nucleating intermetallic phases upon cooling after nucleation of the fcc phase. It is shown that although the prediction based on the parallel tangent method contradicts experimental observations, the prediction based on our extended method agrees with them. Graphical Abstract

Funder

University of Miskolc

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3