Author:
Mamre Mari O.,Sommervoll Dag Einar
Abstract
Abstract
We rely on novel textual analysis of real estate listings and identify renovated dwellings in a dataset of Norwegian transactions to estimate the renovation premium in an urban housing market. The renovation premium is estimated in a hedonic framework by classical regression approaches and a random forest algorithm. The strength of the latter is that it allows for a more complex interplay between the renovation premium and explanatory variables. We estimate a significant positive renovation premium of 5–7 percent for renovated dwellings and a negative premium of 9–10 percent for unmaintained/neglected dwellings. These averages mask significant variations in these premiums over time, particularly, a counter-cyclical effect. Omitting renovation information also has implications for estimated short-term house price growth. Unmaintained dwellings tend to transact more in the fourth quarter, indicating that parts of the seasonal price variation reported in the literature are due to compositional variation with respect to renovation. This composition effect bias price movement estimates downward, if uncontrolled for, as unmaintained dwellings transact at significantly lower prices.
Funder
OBOS
Norwegian University of Life Sciences
Publisher
Springer Science and Business Media LLC
Subject
Urban Studies,Economics and Econometrics,Finance,Accounting
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献