A Machine Learning Approach to Price Indices: Applications in Commercial Real Estate

Author:

Calainho Felipe D.ORCID,van de Minne Alex M.,Francke Marc K.ORCID

Abstract

AbstractThis article presents a model agnostic methodology for producing property price indices. The motivation to develop this methodology is to include non-linear and non-parametric models, such as Machine Learning (ML), in the pool of algorithms to produce price indices. The key innovation is the use of individual out-of-time prediction errors to measure price changes. The data used in this study consist of 29,998 commercial real estate transactions in New York, in the period 2000–2019. The results indicate that the prediction accuracy is higher for the ML models compared to linear models. On the other hand, ML algorithms depend more on the data used for calibration; they produce less stable results when applied to small samples and may exhibit estimation bias. Hence, measures to reduce or eliminate bias need to be implemented, taking into consideration the bias and variance trade-off.

Publisher

Springer Science and Business Media LLC

Subject

Urban Studies,Economics and Econometrics,Finance,Accounting

Reference46 articles.

1. Altman, N.S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175–185.

2. Bailey, M.J., Muth, R.F., & Nourse, H.O. (1963). A regression method for real estate price index construction. Journal of the American Statistical Association, 58(304), 933–942.

3. Balk, B., Diewert, W.E., Fenwick, D., Prud’homme, M., & de Haan, J. (2013). Handbook on residential property prices indices (RPPIs). Technical report, Eurostat.

4. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281–305.

5. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning in accounting and finance research: a literature review;Review of Quantitative Finance and Accounting;2024-06-07

2. Real estate price estimation through a fuzzy partition-driven genetic algorithm;Information Sciences;2024-05

3. A Review: Real Estate Price Prediction using Machine Learning with Research and Trends;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

4. AI-Based on Machine Learning Methods for Urban Real Estate Prediction: A Systematic Survey;Archives of Computational Methods in Engineering;2023-10-27

5. Automatic Product Classification Using Supervised Machine Learning Algorithms in Price Statistics;Mathematics;2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3