Change point detection in text data

Author:

Preis AxelORCID,Schwaar Stefanie

Abstract

AbstractThe analysis of text data using artificial intelligence and statistical methods has become increasingly important in recent years. One application is the automatic assignment of documents. For this purpose, a classification model is trained on the basis of historical data. If the structure of the texts to be classified changes over time, the quality of the classification will decrease. Change point detection algorithms can counteract this. Such algorithms automatically detect changes in the structure of the texts and indicate that the trained classification model has to be adapted. However, the undesired influence of the length of the document needs to be handled when modeling the text data. We present a multinomial change-point model detecting changes in text structures. The results are supported by simulation studies.

Funder

Bundesministerium für Bildung und Forschung

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Clinical Psychology,Experimental and Cognitive Psychology,Analysis

Reference39 articles.

1. Adams RP, MacKay DJC (2007) Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742

2. Agarwal A, Xie B, Vovsha I, Rambow O, Passonneau RJ (2011) Sentiment analysis of twitter data. In: Proceedings of the Workshop on Language in Social Media (LSM 2011)

3. Aminikhanghahi S, Cook DJ (2017) A survey of methods for time series change point detection. Knowl Inf Syst 51(2):339–367

4. Barry D, Hartigan JA (1993) Product partition models for change point problems. J Am Stat Assoc 88(421):309–319

5. Batsidis A, Horváth L, Martín N, Pardo L, Zografos K (2013) Change-point detection in multinomial data using phi-divergence test statistics. J Multivar Anal 118:53–66

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Issues in behavioral data science;Behaviormetrika;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3