Abstract
AbstractWe address the problem of defining similarity between vectors of possibly dependent categorical variables by deriving formulas for the Fisher kernel for Bayesian networks. While both Bayesian networks and Fisher kernels are established techniques, this result does not seem to appear in the literature. Such a kernel naturally opens up the possibility to conduct kernel-based analyses in completely categorical feature spaces with dependent features. We show experimentally how this kernel can be used to find subsets of observations that we see as representative for the underlying Bayesian network model.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Clinical Psychology,Experimental and Cognitive Psychology,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献