Least angle regression in tangent space and LASSO for generalized linear models

Author:

Hirose YoshihiroORCID

Abstract

AbstractThis study proposes sparse estimation methods for the generalized linear models, which run one of least angle regression (LARS) and least absolute shrinkage and selection operator (LASSO) in the tangent space of the manifold of the statistical model. This study approximates the statistical model and subsequently uses exact calculations. LARS was proposed as an efficient algorithm for parameter estimation and variable selection for the normal linear model. The LARS algorithm is described in terms of Euclidean geometry regarding the correlation as the metric of the parameter space. Since the LARS algorithm only works in Euclidean space, we transform a manifold of the statistical model into the tangent space at the origin. In the generalized linear regression, this transformation allows us to run the original LARS algorithm for the generalized linear models. The proposed methods are efficient and perform well. Real-data analysis indicates that the proposed methods output similar results to that of the $$l_1$$ l 1 -regularized maximum likelihood estimation for the aforementioned models. Numerical experiments reveal that our methods work well and they may be better than the $$l_1$$ l 1 -regularization in generalization, parameter estimation, and model selection.

Funder

Japan Society for the Promotion of Science

Meiji University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3