Statistical applications of contrastive learning

Author:

Gutmann Michael U.ORCID,Kleinegesse Steven,Rhodes Benjamin

Abstract

AbstractThe likelihood function plays a crucial role in statistical inference and experimental design. However, it is computationally intractable for several important classes of statistical models, including energy-based models and simulator-based models. Contrastive learning is an intuitive and computationally feasible alternative to likelihood-based learning. We here first provide an introduction to contrastive learning and then show how we can use it to derive methods for diverse statistical problems, namely parameter estimation for energy-based models, Bayesian inference for simulator-based models, as well as experimental design.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Clinical Psychology,Experimental and Cognitive Psychology,Analysis

Reference70 articles.

1. Allen LJS (2017) A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect Dis Model 2(2):128–142

2. Amemiya T (1985) Advanced econometrics. Harvard University Press, Cambridge

3. Aneja J, Schwing A, Kautz J, Vahdat A (2021) A contrastive learning approach for training variational autoencoder priors. In: Beygelzimer A, Dauphin Y, Liang P, Vaughan JW (eds) Advances in neural information processing systems

4. Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162(4):2025–2035

5. Ceylan C, Gutmann MU (2018) Conditional noise-contrastive estimation of unnormalised models. In: Dy J, Krause A (eds) Proceedings of the 35th international conference on machine learning (ICML), proceedings of machine learning research, vol 80, pp 725–733

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Outlier-robust parameter estimation for unnormalized statistical models;Japanese Journal of Statistics and Data Science;2024-02-06

2. A Simplified Framework for Contrastive Learning for Node Representations;2023 57th Asilomar Conference on Signals, Systems, and Computers;2023-10-29

3. Special issue: Recent developments in causal inference and machine learning;Behaviormetrika;2022-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3