Abstract
AbstractA modelling routine has been developed to quantify effects present in p-modulation doped 1.3 μm InAs/InGaAs quantum dot laser and modulator devices. Utilising experimentally verified parameters, calculated modal absorption is compared to measurements, prior to simulation of structures under reverse and forward bias. Observed broadening and a reduction of absorption in p-doped structures is attributed primarily to increased carrier scattering rates and can bring benefit when structures are configured as optical modulators with enhancements in the figure of merit. However, increased carrier scattering limits the maximum modal gain that can be achieved for lasers. The state filling caused by p-doping only marginally reduces absorption but assists laser operation with increased differential gain and gain magnitude at lower current densities.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献