Machine learning FSO-SAC-OCDMA code recognition under different weather conditions

Author:

Abd El-Mottaleb Somia A.,Mètwalli Ahmed,Singh Mehtab,Hassib Mostafa,Aly Moustafa H.

Abstract

AbstractNowadays, transmitting and receiving data with high speed and a high level of security are the main demands. So, a new model of spectral amplitude coding optical code division multiple access (SAC-OCDMA) is suggested in this paper, based on a free space optical (FSO) communication system using coherent sources. Three different codes: enhanced double weight (EDW), modified double weight (MDW) and multi-diagonal (MD) codes are assigned to our proposed model with the direct detection (DD) technique. Furthermore, the model is simulated under different weather conditions including clear air (CA), light mist (LM), very light fog, and light fog (LF). The system performance is evaluated through its bit error rate (BER), Q-factor, received power, and signal to noise ratio (SNR). Moreover, classification of the information received by the three different SAC-OCDMA using three different codes (EDW, MDW, and MD) is still challenging. So, two different machine learning (ML) algorithms are used, in this study, to classify the data received using the different codes. Detecting which code is received at the receiver end is important in order to reduce code error detection. Two algorithms: K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) are adopted to classify different codes used for data transmission under four different weather conditions. The ML input dataset consists of the obtained simulation results, including Q-factor, BER, and SNR. Each feature is to be normalized before using ML. The obtained results show that the performance of the proposed FSO model achieved the longest propagation range under CA weather conditions, 7 km, while the shortest is under LF, which is 0.98 km. This is due to the attenuation of fog that causes signal degradation. The FSO system that uses EDW gives the best result under different weather conditions, while the system that uses MD code gives the worst performance. Also, the highest power is achieved when the EDW code is used at 5.5 km. The EDW has a received power of − 21.58 dBm, while the received power is − 22.04 dBm and − 23.8 dBm for MDW and MD codes, respectively. As for classification between the received information coming from three different codes under different weather conditions, both algorithms, KNN and SVM, achieve promising results in most cases. They showed more than 97% of classification accuracy under CA, LM, and LF weather conditions.

Funder

Arab Academy for Science, Technology & Maritime Transport

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3