Lightweight U-Net for cloud detection of visible and thermal infrared remote sensing images

Author:

Zhang Jiaqiang,Li Xiaoyan,Li Liyuan,Sun Pengcheng,Su Xiaofeng,Hu Tingliang,Chen FanshengORCID

Abstract

AbstractAccurate and rapid cloud detection is exceedingly significant for improving the downlink efficiency of on-orbit data, especially for the microsatellites with limited power and computational ability. However, the inference speed and large model limit the potential of on-orbit implementation of deep-learning-based cloud detection method. In view of the above problems, this paper proposes a lightweight network based on depthwise separable convolutions to reduce the size of model and computational cost of pixel-wise cloud detection methods. The network achieves lightweight end-to-end cloud detection through extracting feature maps from the images to generate the mask with the obtained maps. For the visible and thermal infrared bands of the Landsat 8 cloud cover assessment validation dataset, the experimental results show that the pixel accuracy of the proposed method for cloud detection is higher than 90%, the inference speed is about 5 times faster than that of U-Net, and the model parameters and floating-point operations are reduced to 12.4% and 12.8% of U-Net, respectively.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3