Structural, optical, photoluminescence and magnetic investigation of doped and Co-doped ZnO nanoparticles

Author:

Sedky A.,Afify N.,Almohammedi Abdullah,Ibrahim E. M. M.,Ali Atif Mossad

Abstract

AbstractWe report here the structural, optical, photoluminescence (PL), and magnetic investigation of Zn1−x−yFexMyO nanoparticles. The lattice constants and crystallite size are decreased by Fe, followed by a further decrease up to (Fe + M) = 0.30. A compressive stress is approved and the size of particle is between 180 and 277 nm and follows the sample order of ZnO, (Fe + Cu), (Fe + Ni), and Fe. Although a single value of energy gap (Eg) is found for pure and Fe-doped ZnO, two values of Eg (Egh and Egl) are found for the co-doped samples. The Eg is generally increased by Fe, followed by a further increase for the Cu-series, whereas it is decreased for the Ni-series. The refractive indices nK and nT proposed by different methods are generally decreased by Fe, followed by a further decrease for both series. Although Fe doped ZnO depressed the density of carriers (N/m*), it increased again for the co-doped samples. The residual dielectric constant ϵL is decreased by Fe, followed by an increase for the Cu-series, but it is decreased for the Ni-series. The loss factor tan δ increases slightly with Fe, followed by an increase for the Ni-series, but it decreases in the Cu-series. A significant depression of optical conductivity σopt by Fe was obtained, followed by a further decrease which is higher for the Cu-series. The PL shows four visible emissions. Interestingly, an IR emission at about 825 nm is only obtained for the co-doped samples. Furthermore, the blue emission (Iblue) was higher than UV (IUV), [(Iblue/IUV) > 1], but it is greater for the Ni series than the Cu. Although ZnO exhibits diamagnetic behavior, the Fe and co-doped samples exhibit ferromagnetic with higher magnetization for the Ni-series than the Cu. The current results recommend the co-doped samples in nanoscale for some of advanced devices.

Funder

Assiut University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3