Abstract
AbstractThis paper introduces a novel underwater (UW) optical communication system that utilizes optical code division multiple access transmission technique using the permutation vector code. Three scenarios of water are considered, pure sea (PS), clear ocean (CL), and coastal ocean (CO). The performance is evaluated analytically in terms of bit error rate (BER), received power, signal to noise ratio for different UW links and data rates. The results show that the shortest UW range is achieved in the case of CO, achieving the highest extinction ratio compared to CL and PS. Considering a BER below the forward error correction (FEC) limit of 3 × $${10}^{-3}$$
10
-
3
, the maximum UW ranges reached are 21 m for PS, 12 m for CL, and 8 m for CO at 3 Gbps with 20 dBm transmitted power. The propagation range could be increased when the transmitted power is increased to 25 dBm, achieving the ranges of 31 m, 18 m, and 9 m, for PS, CL, and CO, respectively.
Funder
Arab Academy for Science, Technology & Maritime Transport
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献