Modeling and investigation on the performance enhancement of hovering UAV-based FSO relay optical wireless communication systems under pointing errors and atmospheric turbulence effects

Author:

Hayal Mohammed R.,Elsayed Ebrahim E.,Kakati Dhiman,Singh Mehtab,Elfikky Abdelrahman,Boghdady Ayman I.,Grover Amit,Mehta Shilpa,Mohsan Syed Agha Hassnain,Nurhidayat Irfan

Abstract

AbstractThis paper investigates and enhances unmanned aerial vehicle (UAV) relay-assisted free-space optics (FSO) optical wireless communication (OWC) systems under the effects of pointing errors (PEs) and atmospheric turbulences (ATs). The incorporation of UAVs as buffer-aided moving relays in the conventional FSO (CFSO) relay-assisted systems is proposed for enhancing the performance of PEs through AT. Using M-PSK (phase shift keying) and M-QAM (quadrature amplitude modulation), the impact of PEs on transmission quality is evaluated in this work. We evaluate and optimize the symbol error rate, outage probability (OP), and signal-to-noise ratio (SNR) for the UAV-to-ground station-based FSO communications systems. The spatial diversity-based relay-assisted CFSO systems can enhance the performance of the UAV-UAV FSO links. In this paper, a new FSO (NFSO) channel model for the hovering UAV-FSO OWC fluctuations under the PEs, AT effects, jitter, deviation, receiving an error, and wind resistance effects are established. To improve the performance of hovering UAV-based FSO relay OWC systems. We reduce the influence of UAV-FSO OWC fluctuations under PEs and AT effects. By receiving incoherent signals at various locations, the spatial diversity-based relay-assisted NFSO systems can significantly increase the system's redundancy and enhance connection stability. Numerical results show that to achieve a bit-error-rate (BER) of $$\le 10^{ - 5}$$ 10 - 5 , the required SNR is ≥ 23 dB when the wind variance of the UAVs $$\sigma_{\alpha }^{2}$$ σ α 2 increases from 0 to 7 mrad with FSO link distance L = 2000 m. The required SNR is ≥ 25 dB when the wind variance $$\sigma_{\alpha }^{2}$$ σ α 2 is 1 mrad at an OP of $$10^{ - 6}$$ 10 - 6 . To obtain an average BER of $$10^{ - 6}$$ 10 - 6 , the SNR should be 16.23 dB, 17.64 dB, and 21.45 dB when $$\sigma_{\alpha }^{2}$$ σ α 2 is 0 mrad, 1 mrad, and 2 mrad, respectively. Using 8-PSK modulation without PEs requires 23.5 dB at BER of $$10^{ - 8}$$ 10 - 8 while 16-QAM without PEs requires 26.5 dB to maintain the same BER of $$10^{ - 8}$$ 10 - 8 . Compared with 16-QAM without PEs, the SNR gain of 8-PSK without PEs is 3 dB. The results show the relay-assisted UAV-FSO system with five stationary relays can achieve BER $$10^{ - 8}$$ 10 - 8 at 25 dB SNR in the ideal case and $$10^{ - 5}$$ 10 - 5 at 27 dB SNR with AT and PE at FSO length 1000 m. The results show the relay UAV-FSO system outperforms the CFSO at the BER and SNR performance. The effects of UAV’FSO s fluctuation increase when the UAV-FSO link length, $${\text{L}}_{{{\text{fso}}}}$$ L fso increases. The results of the weak turbulence achieve better SER compared with MT and ST. The obtained results show that decreasing $${\text{L}}_{{{\text{fso}}}}$$ L fso can compensate for the effects of UAV-FSO link fluctuation on the proposed system. Finally, we investigated the CFSO relay-assisted UAV-FSO system with aided NFSO-UAVs spatial diversity-based relay-based on NFSO OWC and revealed the benefits of the resulting hybrid architecture.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3