Gamma irradiation-induced changes in structural, linear/nonlinear optical, and optoelectrical properties of PVB/BiVO4 nanocomposite for organic electronic devices

Author:

Abdel Maksoud M. I. A.ORCID,Fahim Ramy Amer,Kassem Said M.,Awed A. S.

Abstract

AbstractHerein, nanocomposite films based on polyvinyl butyral (PVB) and BiVO4 plates were synthesized through solution casting. The present study aims to investigate the impact of varying doses of gamma irradiation (0, 15, 30, 60, and 90 kGy) on the structural, dispersion, linear/nonlinear optical, and optoelectrical properties of PVB/BiVO4 nanocomposite films. The effects of gamma irradiation on various optical characteristics, such as refractive index (n), extinction coefficient (k), and other related parameters, have been observed. The study of dielectric behavior and the derivation of optoelectrical parameters, including high-frequency dielectric constant (ε), plasma frequency (ωP), relaxation time (τ), and optical mobility (µopt.), were conducted using the real and imaginary parts of the dielectric constants εr and εi. In addition, the linear optical susceptibility (χ(1)), the third-order nonlinear optical susceptibility (χ(3)), and the nonlinear refractive index (n2) were studied as a function of gamma irradiation doses. Furthermore, the results demonstrate that the average oscillator wavelength (λ0) values, oscillator strength (S0), and optical conductivity (σopt) vary significantly after gamma radiation treatment. Overall, the strong correlations between the linear/nonlinear optical and optoelectrical parameters of the irradiated PVB/BiVO4 nanocomposite films make them suitable for application in flexible organic electronic devices.

Funder

Egyptian Atomic Energy Authority

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3