Abstract
AbstractThe presence of a thermally annealed metallization layer on top of a GaAs slab waveguide proofed to be of strong impact on the optical device behavior. Induced by the stress on the chip the elasto-optical effect imprinted a strong variation on the refractive index that led to anti-guiding and guiding effects. In order to enable precise prediction of the optical behavior we present a 3D mechanical device simulation which provides detailed insights to the overall stress state. The results are then used in a 2D in-house developed optical simulation that allows precise analysis of the microscopic optical behavior. Therefore, the accumulated stress effects are represented by an effective temperature difference between semiconductor and metallization, which allows a strong simplification of the model setup. The results are validated by comparison to the experimental derived data. As the simulation proves to be highly accurate, the stress load on the device can be calculated vice versa from the optical behavior.
Funder
Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献