Hybrid quasi-3D optimization of grid architecture for single junction photovoltaic converters

Author:

Nikander VeikkaORCID,Wei Jianguo,Aho Arto,Polojarvi Ville,Tukiainen Antti,Guina Mircea

Abstract

AbstractA numerical study of metal front contacts grid spacing for photovoltaic (PV) converter of relatively small area is presented. The model is constructed based on Solcore, an open-source Python-based library. A three-step-process is developed to create a hybrid quasi-3D model. The grid spacing under various operating conditions was assessed for two similar p–n and n–p structures. The key target was finding optimal configuration to achieve the highest conversion efficiency at different temperatures and illumination profiles. The results show that the n–p structure yields wider optimal spacing range and the highest output power. Also, it was found that temperature increase and illumination nonuniformity results in narrower optimal spacing for both structure architectures. Analyzing the current–voltage characteristics, reveals that resistive losses are the dominant loss mechanism bringing restriction in terms of ability to handle nonuniform illumination.

Funder

State Grid Corporation of China

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3