Abstract
AbstractIn this paper, a Reflective Semiconductor Optical Amplifier based, Radio-over-Fibre access network configuration has been proposed to feed future millimeter-wave radio systems. The system architecture combines several approaches to overcome the challenges of millimeter-wave signal transmission. Reflective semiconductor optical amplifier modulator realizes a colorless and relatively cost-effective Remote Antenna Unit. The same optical carrier is used for both downlink and uplink. Optical single-sideband modulation is used at the downlink, which is robust against chromatic dispersion, but the complex realization of this modulation format is not possible at the Remote Antenna Unit. Optical intermediate frequency transmission is applied at the uplink direction, and the required local oscillator signal originates from the central station. The critical element is the reflective optical amplifier, as it compensates for the optical loss and works as an external intensity modulator. The operation of the reflective optical amplifier is modeled by multisection rate and wave equation-based description. The amplification and modulation behaviors of an available reflective optical amplifier are also measured. The experimental work validated the colorless operation and the quality of the modulation versus bias current and input optical power. Finally, system simulation was realized. The uplink and downlink power budgets were balanced, and optimal values for the optical coupling rate and RSOA bias current have been selected.
Funder
NKFIH
Budapest University of Technology and Economics
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献